

REPORT NUMBER: 100220191SAT-002B ORIGINAL ISSUE DATE: November 23, 2010 REVISED DATE: N/A

EVALUATION CENTER

Intertek Testing Services NA Inc. 16015 Shady Falls Rd. Elmendorf, TX 78112

RENDERED TO

EST REPORT

International Fireproof Technology Inc. 17528 Von Karman Ave. Irvine, CA 92614

PRODUCT EVALUATED: FL 500 open cell 0.5 pound spray foam and 20 wet mils of DC 315 EVALUATION PROPERTY: Heat Release, Flame Spread

Report of testing FL 500 open cell 0.5 pound spray foam and 20 wet mils of DC 315 for compliance with the applicable requirements of the following criteria: NFPA 286 and 2006 IBC Section 803.2.1. / 2009 IBC Section 803.1.2

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

1 Table of Contents

INTRODUCTION		3
TEST SAMPLES		3
TESTING AND EVALUATION METHODS		3
TESTING AND EVALUATION RESULTS		6
CONCLUSIONS		6
APPENDICES		
Appendix A:	DATA	7
Appendix B:	PHOTOGRAPHS	12
LAST PAGE		16

2 Introduction

Intertek Testing Services NA (Intertek) has conducted testing for International Fireproof Technology on FL 500 open cell 0.5 pound spray foam and 20 wet mils of DC 315 to evaluate heat release and flame spread properties when subjected to specific ignition conditions. Testing was conducted in accordance with NFPA 286. This evaluation was performed on November 23, 2010.

3 Test Samples

3.1. SAMPLE SELECTION

The subject test specimen is a traceable sample selected from the manufacturer's facility. Intertek selected the specimen and has verified the composition, manufacturing techniques and quality assurance procedures.

3.2. SAMPLE AND ASSEMBLY DESCRIPTION

The three walls of the test specimen consisted of 2x6 studs spaced 16" o.c. The ceiling was constructed using 2x12 joists spaced 16" o.c. running perpendicular to the side walls. The exterior of the studs and joists were covered with 5/8" thick gypsum board. The final interior dimensions were 8 feet high, 8 feet wide and 12 feet deep.

The stud cavities were filled with 5-1/4 inches of FL 500 open cell 0.5 pound spray foam insulation in the walls and 11-1/4 inches of FL 500 open cell 0.5 pound spray foam insulation in the ceiling. Then 20 wet mils of DC 315 was sprayed on the walls and ceiling.

4 Testing and Evaluation Methods

This standard describes a method for determining the contribution of textile wall and ceiling coverings to room fire growth during specified fire exposure conditions. This method is not intended to evaluate the fire endurance of assemblies, nor is it able to evaluate the effect of fires originating within the wall assembly. The method is not intended for the evaluation of floor finishes.

This method is to be used to evaluate the flammability characteristics of finish wall and ceiling coverings when such materials constitute the exposed interior surfaces of buildings. This test method does not apply to fabric covered less than ceiling height, freestanding, prefabricated panel furniture systems or demountable, relocatable, full-height partitions used in open building interiors. Freestanding panel furniture systems include all freestanding panels that provide visual and/or acoustical separation and are intended to be used to divide space and may support components to form complete work stations.

This fire test measures certain fire performance characteristics of finish wall and ceiling covering materials in an enclosure under specified fire exposure conditions. It determines the extent to which the finish covering materials may contribute to fire growth in a room and the potential for fire spread beyond the room under the particular conditions simulated. The test indicates the maximum extent of fire growth in a room, the rate of heat release, and if they occur, the time to flashover and the time to flame extension beyond the doorway following flashover. It does not measure the fire growth in, or the contribution of, the room contents. Time to flashover is defined herein as either the time when the radiant flux onto the floor reaches 20 kW/m² or the temperature of the upper air reaches 600°C. A pair of crumpled single sheets of newspaper is placed on the floor 2 feet out from the center of the rear wall and front walls to determine flashover. The spontaneous ignition of this newspaper provides the visual indication of flashover.

The potential for spread of fire to other objects in the room, remote from the ignition source, is evaluated by measurements of:

- 1. The total heat flux incident on the center of the floor.
- 2. A characteristic upper-level gas temperature in the room.
- 3. Instantaneous net peak rate of heat release.

The potential for the spread of fire to objects outside the room of origin is evaluated by the measurement of the total heat release of the fire.

TEST EQUIPMENT AND INSTRUMENTATION

IGNITION SOURCE

The ignition source for the test is a gas burner with a nominal 12- by 12-inch porous top surface of a refractory material. The burner used at this laboratory is filled with a minimum 4-inch layer of Ottawa sand.

The top surface of the burner through which the gas is applied is positioned 12 inches above the floor. The burner has a 1 inch wide steel lip around its edge, which is placed in contact with the wall such that the edge of the diffusion surface is located 1 inch from both walls in the corner of the room opposite from the door.

The gas supply to the burner is C.P. grade propane (99 percent purity). The burner is capable of producing a gross heat output of 40 ± 1 kW for five minutes followed by a 160 ± 5 kW for ten minutes. The flow rate is metered throughout the test. The design of the burner controls is such that when one quarter-turn ball valve is opened, the flow of gas to the burner produces 40 kW and when a second quarter-turn valve is opened the combined flow produces 160 kW.

COMPARTMENT GEOMETRY AND CONSTRUCTION

The interior dimensions of the floor of the fire room, when the specimens are in place, measures 8 feet, by 12 feet. The finished ceiling is 8 feet \pm 0.5 inches above the floor. The four walls are at right angles defining the compartment. The compartment contains a 30 \pm 0.25 by 80 \pm 0.25

inch doorway in the center of one of the 8' by 8' walls. No other openings are present to allow ventilation.

PROCEDURE

SUMMARY OF METHOD

A calibration test is run within 30 days of testing any material as specified in the standard. All instrumentation is zeroed, spanned and calibrated prior to testing. The specimen is installed and the diffusion burner is placed. The collection hood exhaust duct blower is turned on and an initial flow is established. The gas sampling pump is turned on and the flow rate is adjusted. When all instruments are reading steady state conditions, the computer data acquisition system and video equipment is started. Ambient data is taken then the burner is ignited at a fuel flow rate that is known to produce 40 kW of heat output. This level is maintained for five minutes at which time the fuel flow is increased to the 160 kW level for a 10-minute period. During the burn period, all temperature, heat release and heat flux data is being recorded every 6 seconds. At the end of the fifteen minute burn period, the burner is shut off and all instrument readings are stopped. Post test observations are made and this concludes the test.

All damage is documented after the test is over, using descriptions, photographs and drawings, as is appropriate.

4.1. TEST STANDARD

NFPA 286

5 Testing and Evaluation Results

5.1. RESULTS AND OBSERVATIONS

FIRE TESTS

The test was started at 9:55 a.m. on November 23, 2010. The ambient temperature was 80°F with a relative humidity of 72%. The data acquisition system was started and the burner was ignited. Events during the test are described below:

TIME	OBSERVATION
(min:sec)	
0:00	Ignition of burner. Heat output set to 40 kW.
0:33	Discoloration on the wall surface
0:45	Light smoke
2:00	Increase in smoke
4:00	No change
5:00	Increase of propane flow to 160 kW
5:10	Flame tips 2ft horizontally on ceiling
5:30	Increase in smoke
5:54	Paint falling from ceiling

9:00	Charring 4ft horizontally on ceiling
12:00	No change
13:00	No change
14:00	No change
15:00	Gas off – Test terminated

6 Conclusion

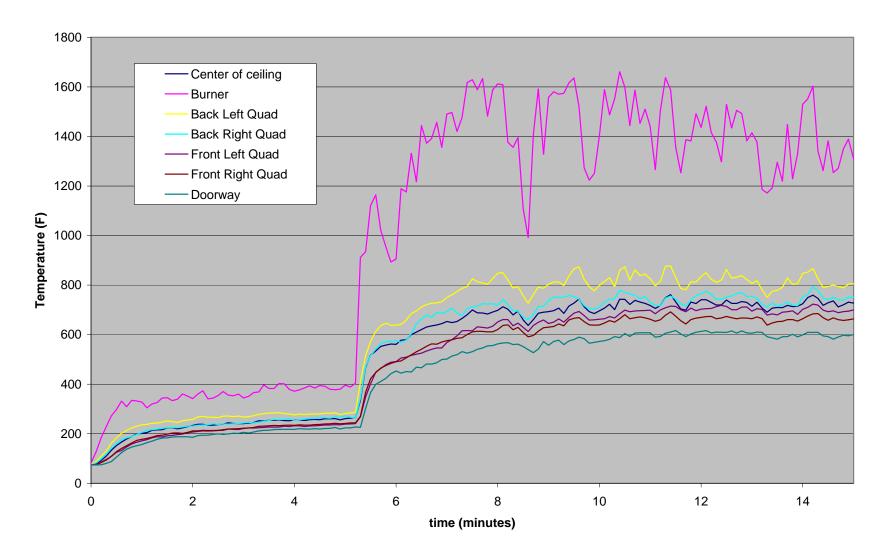
NFPA 286 does not publish pass/fail criteria. One must consult the codes to determine pass fail.

This specimen met the criteria set forth in the 2006 IBC Section 803.2.1 / 2009 IBC Section 803.1.2

INTERTEK TESTING SERVICES NA

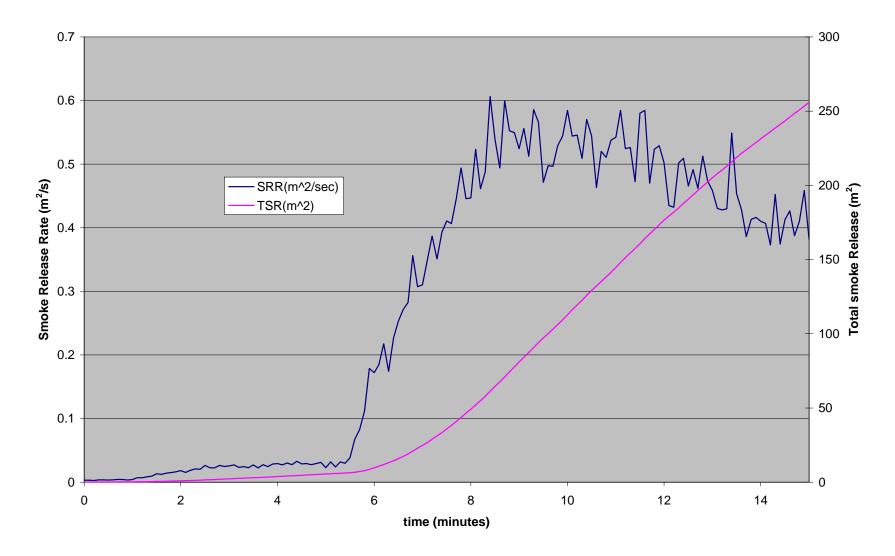
Reported by:

Troy G. Bronstad **Senior Associate Engineer**

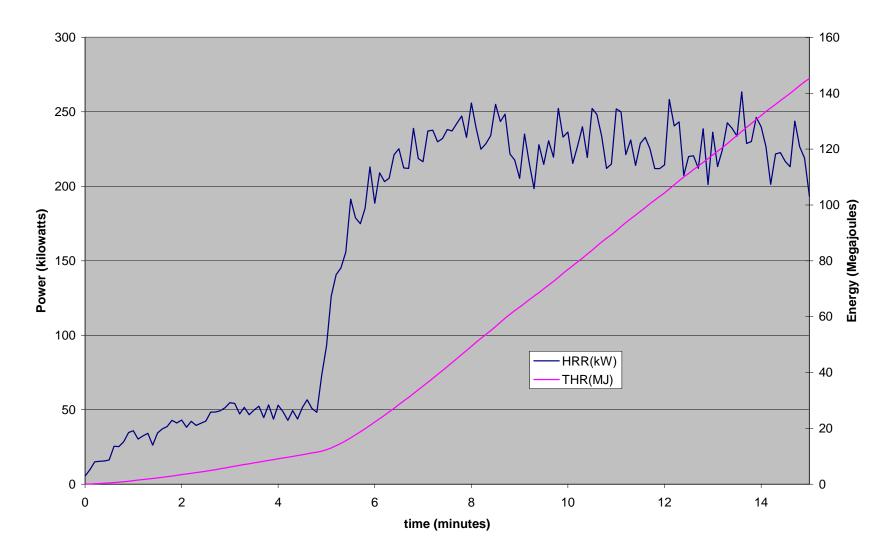

Reviewed by:

C. Anthony Peñaloza Engineering Team Leader

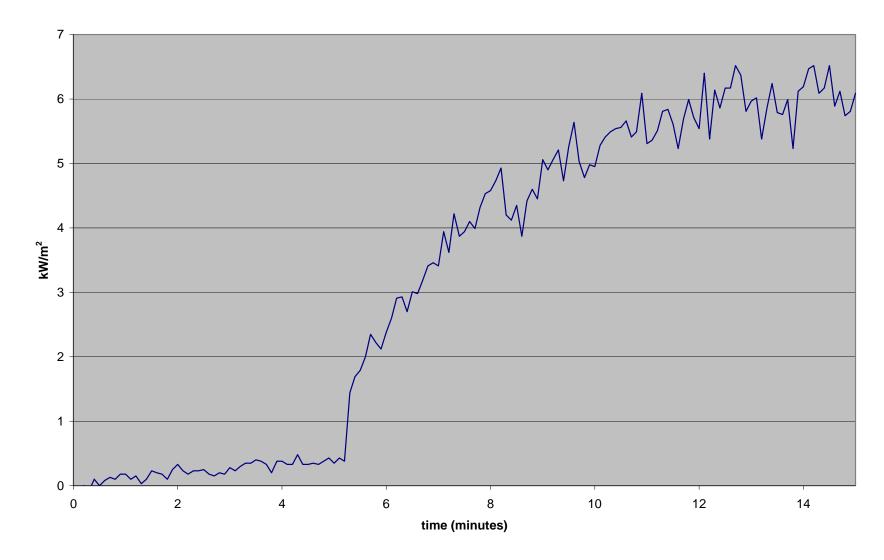
APPENDIX A Test Data



Thermocouple Data



Smoke Release



Heat Release

Intertek

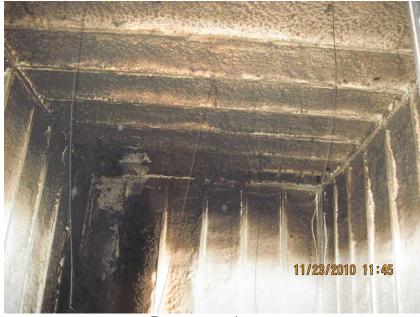
Radiant Heat

APPENDIX B Photographs

Pre-test photo

Test photo.

Test photo



Test photo

End of test

Post -test picture

LAST PAGE OF TEST REPORT

REVISION SUMMARY

DATE	SUMMARY
November 23, 2010	First issue. No revisions.

